

LIS-4708

Programming Languages

Know about BOTH..

What you hear about

v.

What people actually use

“Closeness” to machine

Compiled (older method) – Before running, you have
to “convert” it. Usually Makes for faster/more
efficent code.

Interpreted - “Conversion” happens on the fly.

Scripted – No “conversion” necessary. Usually only
good for shorter/smaller/ scripted things.

Compiled Languages
● Older
● “Normal”
● “Close to machine”

“COMPILED” - Source Code

Compiled Code (binaries)

(Somewhat) Important “real life” paradigms.
(these are fuzzy)

● Imperative/Procedural (default) - Do things step by step

● Functional – Turn it into straight up math. No variables, no
“procedures”

● Object Oriented – Everything uses an “object” metaphor.
(“Black Box Approach”)

● Declarative – (kind of the grail, you just SAY it.)

Remember this?
(Frankly, the stuff in yellow gets jumbly)

Changing your screensaver

Writer/Word

Calc/Excel

Macros

HTML/PHP/MYSQL

Bash

Python/Perl/Ruby/Java/Javascript/C# interpreted/scripted

C compiled

Assembly (00 4E A3 77 8C 0A etc)

Machine (00101010011010101100)

Bash/Shell languages

For the purpose of interacting with your computer on a day-
to-day basis..

..before guis even existed.

Bash/Shell languages

If you are looking to learn something new, I HEARTILY
recommend Bash.

Bash is the “language” most strongly associated with the
highest developer salaries.

You’ll learn about Linux by default. And thus Unix by default,
which is ALL operating systems that aren’t Windows.

(and another bold prediction, this will soon apply to ALL
OPERATING SYSTEMS, period.)

Categories I’m completely making up to tell the
story:

REGULAR (programming and operating on the machine in
front of your face)

WEB

WEIRD

Categories I’m completely making up to tell the
story:

REGULAR =

The normal way to go is:

● Command line interaction

● an optional REPL

● a way to execute/mess with in a terminal

● No other languages/interfaces required

REGULAR

C (and C-alikes)

Java

Visual Basic

Python

Ruby

C (C++, C#)
(low-level machines, everywhere)

(Apple apps are Objective-C)

● Practical grandaddy of (modern) everything, the first
“accessible” language

● Still a good choice for speed and control, at the cost
of ease

● Later C-alikes tend towards “object oriented” and
just “easier”

● "Why C sucks" -- TOO MUCH control, too much
“hardcore stuff” to worry about (eg malloc)

Java
(cross-compatible, Android)

● First attempt at dethroning C, looks a lot like it
● Originally company driven, as a result got

popular/useful quickly
● VERY PORTABLE – write once, works in all OSes
● interpreted, not compiled (Virtual Machine required)
● "Why Java Sucks" - slow, verbose, too many

options/fragmented

REGULAR (but much nicer)

Python

Ruby

Python

● Forced whitespace
● Usually "one way to do a thing"
● In the "middle" on just about all parameters.
● In a perfect world, we’d all be using Python..or

better yet...

Ruby

● Pure Object-Oriented
● Really really nice syntax (3.times print “hello”)
● Unfortunately, a bit slow
● Built somewhat for the web, and yet...

THE WEB
(screwed everything up, language wise)

HTML made the web easy to read – but
unfortunately, not easy to write.

HTML/CSS
- Not really languages. (Can't really do anything
besides dress up and move around text and pictures and
other things)

- Traditionally, for dressing up text because
fonts and colors (and HYPERLINKS WHOA)
used to be a pretty big deal.
- Today, not even a great choice if you need a
website, BUT you should know it because it's
now the FRAMEWORK for the web.

All the web terribleness can be
explained by...

We want interactivity on the web

NOOOOOOOOW!!!!

No matter how unsafe or ugly or hacky!

Fail early! Fail Often!

Flash

Designed to make gaudy stupid animations
and games, and was just hacked to death to
do everything else.

PHP
(not bad actually. Server-side)

● Designed to handle the web and HTML
● Features were added as needed, not from

ground up
● Not flashy, but solid for databasey type

things.
● "Why PHP Sucks" Purists HATE IT; Arguably

duct-tapey.

(still, facebook and wordpress)
(ASP is Microsoft's slightly different “PHP”)

All the web terribleness can be
explained by...

I’ll be a bit more charitable.

What language runs on pretty much anything
you can buy or install, out of the “box?”

Javascript

● Though looks like c, VERY DIFFERENT FROM JAVA.
Confusing, huh?

● CLIENT SIDE (mostly)….but

● JAVASCRIPT IS EATING THE WEB RIGHT NOW. LOOKING
VERY DOMINANT.

● As a result, people are rewriting EVERYTHING in Javascript.
Frequently poorly.

● Also, people are trying to do a half-hearted version of “open-
source” (e.g., yes you can look at the code, but we control the
repository/framework/direction/dependencies/company)

Javascript, wtf

So, this thing doesn’t look like its stopping. Things to watch
out for:

● Millions and millions of “frameworks on top of Javascript to
make it suck less.”

● And then, the reverse

● And also “server-side Javascript”

Weird and perhaps cool
SQL

Lisp and the Functionals

whitespace

Brainf**k

scratch

and a zillion others

Lisp (and other functionals)
(Haskell, Clojure)

- MATHY

- VERY, perhaps TOO “versatile”

- Stallman and Emacs

- Functional is seeing a resurgence, because
of its mathematical “purity.” There are NO
VARIABLES, WHOA.

SQL
(structured query language)

- Declarative!

- nice syntax

- yet, still another layer of complexity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

