

LIS-5364

Crash Course in Shell Scripting; Bash shell

Multiple commands, one line

& - Run both simultaneously

&& - Run the first one, and then the second
ONLY IF the first “succeeds,” otherwise stop.

; - Run the first one, then the second
regardless of what happens.

Pipes and redirects

Default behavior:

read from “stdin”, write to “stdout”

> (over)write/replace a file

>> write to/append to file

< read from file

| pipe output from first command into 2nd

tee pipe AND write to stdout

BASH
BASH (Bourne Again) Shell

Lots of “tricks” are available here, eg

● Tab completion

● Up arrow key for history

● Ctrl-R to search history

and many MANY more

More BASH

Furthermore, you can modify this environment to fit your needs, via:

.bashrc

(stuff here will be run everytime you open a terminal)

A great example is the “alias” command. If a command doesn't exist
for what you want to do, just ,ake up your own!

alias viewcnn='firefox http://cnn.com'

Extending BASH

Recently, a HUGE uptick in very cool instant shell ideas and replacing

some of the older tools, e.g.

fzf

ripgrep(rg)

ALTERNATIVELY – using alternate shells, fish, zsh, etc.

Linux/Unix Commands
An action or program that a computer can do

Find them with “apropos,” learn about them with “man”

(check these out http://www.oreillynet.com/linux/cmd/)

Commands can optionally have ARGUMENTS, in the form of:

OPTIONS

one dash + letter (ls -a)

two dashes + words (sort --reverse)

EXPRESSIONS

text; numbers; files; streams – things to be manipulated

http://www.oreillynet.com/linux/cmd/

Opening Files
IN TERMINAL

less

cat (stdout)

COMMAND/ARGUMENT STYLE

gnome-open file

vim textfile

firefox localfile.html

firefox http://slashdot.org

SORT
● - i = case INSENSITIVE
● - r = REVERSE
● - g = numbers
● - R = random

GREP (line matching)
grep OPTIONS PATTERN (FILE)
Can search over FILES or STDIN

Also, can search ONE FILE or MANY (check -d or -R)

useful flags:

-i (case insensitive)

-v (invert search/show NON-matches)

-l (just show matching FILES, not lines)

FIND (files)
Searches directory tree rooted at given filename (default
current)

Good if you also want to use parameters like “date”, “last
accessed”, “size” and so forth.

Often used with -name or -iname

Also, consider “locate” (database must be setup beforehand

SED (stream editor)
Considered an entire language

Usually used with “s” for substitution

Delimiters are usually slashes but can be anything

REGULAR EXPRESSIONS

echo “Good day” | sed 's/day/night/'
http://www.grymoire.com/Unix/Sed.html

http://sed.sourceforge.net/sed1line.txt

http://www.grymoire.com/Unix/Sed.html
http://sed.sourceforge.net/sed1line.txt

AWK
awk <search pattern> {<program actions>}

Also a text-processor, good for flat-file databases

Also, an entire language

awk ' /apples/ { print $2 “ “ $1 } '

http://www.vectorsite.net/tsawk.html

http://www.pement.org/awk/awk1line.txt

http://www.vectorsite.net/tsawk.html
http://www.pement.org/awk/awk1line.txt

CLI v GUI?
● Command Line Interface
●

● Vs
●

● Graphical User Interface

…..why not both?

CLI, but GUI-ish
● Nano
● Mc (midnight commander)

Generally, “ncurses” type apps

From CLI to GUI
● Opening file on command line

firefox home.html

(Remember, closing the terminal will also
close the program, unless you say otherwise,
e.g. with “nohup”)

From GUI to CLI
● Nautilus scripts?

(These are surprisingly HARDER to come by
as time goes on…)

Shell Scripting

So far, we've been doing everything on the
command line. What if we want to do 2 or

more things?

& - run another command SIMULTANEOUSLY

&& run another command after the first has completed
successfully.

; - run another command after the first has completed
regardless of outcome

Scripting cont'd

Well, you could also put a bunch of
commands in one file, one command per
line, and then run that file.

But it's not really “programming (?)”

(yeah, yeah it is)

Bash scripting
Start with a SHEBANG!

#/bin/bash

(note, # is also the comment delimiter)

End by saving AND chmodding

chmod +x scriptname.sh

Note, they must be run with a FULLPATH!

NOT scriptname.sh

But /home/user/scriptname.sh

(which can be shortened to ./scriptname.sh)

Variables
Set them without $, use them with $ (NO SPACES)

thingtoecho=“Hey, this will be echoed”

echo $thingtoecho

Or “read” them

read $yourname

echo “Whattup $yourname”

Notes on quotes
“Double Quotes” – Print contents, expand variables

'Single Quotes' - Print contents LITERALLY

`backticks` - Execute command, put contents in quotes*

(also, backslashes “literalize” special chars)

date=“eh, whenever”

echo “date” echo 'date' echo `date`

echo “$date” echo '$date' echo `$date`

(my advice: don’t actually use backticks. More on that later)

Obvious Use of Variables
echo "Hey, so, what's your username?"

read username

echo "you know, while you're at it, might as well give me your password."

read password

echo "WOW, so your username is $username and your password is $password."

echo "thanks, sucker!"

Internal storage

echo "New entry:" >> "/home/class/ListOfSuckers.txt"

echo "Username:$username" >> "/home/class/ListOfSuckers.txt"

echo "Password:$password" >> "/home/class/ListOfSuckers.txt"

The below will add a newline for us, to keep them visually separated.

echo "" >> "/home/class/ListOfSuckers.txt"

But lets clean up...
suckerlist="/home/class/ListOfSuckers.txt"

echo "Hey, so, what's your username?"

read username

echo "you know, while you're at it, might as well give me your password."

read password

echo "WOW, so your username is $username and your password is $password."

echo "thanks, sucker!"

Internal storage

echo "New entry:" >> $suckerlist

echo "Username:$username" >> $suckerlist

echo "Password:$password" >> $suckerlist

The below will add a newline for us, to keep them visually separated.

echo "" >> $suckerlist

Special Variables

Environment Variables – usually capitalized,
contain system/shell info

SHELL, HOME, PATH (?), LOGNAME etc

Argument Variables

$1 is first, $2 is second, and so on.

$# is number of args, $* is all of them

Create commands with argument variables

Contents of the file, apologize_to.sh

echo “I'm sorry about all the
password stuff, $1”

Usage: apologize_to.sh USERNAME

Making decisions (if then)

(you can consolidate with ;)

if condition
then

Do this
elif (else if)

then Do this other thing
else (everything else was false)

Do this other other thing
fi

Expressing conditions

True = 0. False = 1

Generally, just use double brackets.

If [[$variabletotest = “thing you want”]];
if [[$password == "password"]]; then

echo "Wow. You officially have the worst password in the world."

else

echo "Well, at least you're not using the worst password in the
world."

fi

Conditions with commands

Another slick way to use conditions is with
commands. The general rule is, if a command
HAS a result, it's true, if not, it's false.
if grep “fish” petlist.txt; then

echo “Looks like you got a fish!”

else

echo “sorry, no fish here”

fi

While

“While” is very similar to if; it keeps repeating
the loop while a condition is true.

(while + read + “cat pipe” or “<”) is

very good for reading files

For loop

For VARIABLE in (RANGE or LIST)

do

done

What I didn't (and likely won't)
cover

Functions (actually, pretty useful)

Arrays

Bash Pattern Matching

Signal Catching (what to do with kill)

Traps (untimely stopping/catching vars)

Using sed / awk / grep in your scripts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

