

LIS-5364

PHP and OOP Basics

PHP
● First weirdness – it's not really run or

compiled like most languages. It lives inside
HTML...

More specifically...

The process

Webserver parses/converts the HTML that it
knows

If it sees <?php, it passes that to the PHP
“converter”

PHP does its thing, and spits text back into
the HTML (as opposed to “directly on the
page”)

Basic PHP
<html>

<head>

<title>My First PHP Page</title>

</head>

<body>

<?php

echo "Hello World!";

?>

</body>

</html>

Whitespace?
● Like in HTML, mostly ignored
● Hence, the importance of a semicolon (;) at

the end of every line.

Variables
● Start with $
● Case sensitive
● Must begin with alpha or underscore
● Must have only alphanumeric or underscore

PHP Data Types
● 3 classes:

Scalar – One thing

Compound – Multiple things

Special - umm, special

Scalar

String – words and stuff

Integer – whole numbers

Float – Decimals

Boolean – true or false

Compound

Arrays

Objects

“echo”

Printing words to the screen.

Single Quotes = literal

Double Quotes = will resolve variable (you'll
probably use double waaay more)

More echo:
● But, what if you want to actually print quotes

and such? Use Backslash for escaped
characters, e.g.

\' = literal single quote

\”= literal double quote

\$ = dollar sign

\n= newline

\t = tab

Big chunks of text?

Use “heredoc” to resolve variables, and the
new “nowdoc” to do literals

A little on comments

PHP supports C and Shell comments, so:

// .. to the end of the line

to the end of the line

/* to */

Operators
String operators? Really the period, and even then, you'd
probably not use it much.

Math? They basically work as expected. Remember, PHP is
weakly typed, so with numbers, they're integers until they're
not. Be careful.

Strongly typed languages do not do this, so you get, e.g. 7/2
= 3

(ps, remember modulus and what it's good for?)

Arrays
● Basic arrays:

0 indexed

Can declare, but don't need to

$myarray = array(“these”,”are”,”elements”);

Add to end with $myarray[] =”yo”;

Associative Arrays

Key-Value relationship

Think like “dictionaries”

Remember, they are one-way functions; A
value might be the same for multiple keys,
but each key has ONE AND ONLY ONE value.

Assign like: array (“word” => “the definition”)

foreach

Do something on each element of the array.

foreach ($thisarrayelement as $thing)

or

● foreach ($currentelement as $key => $value)

Array functions

array_intersect

array_diff

array_merge

array_unique

sort
shuffle

Other Peoples Code?

● Import / Copy from other peoples code
stores, e.g. gitlab and github

● Install via a “php installer” page
● Use a package manager like “composer” (like

apt, but for PHP)
● Docker or other container images

Object-Oriented?
● Not quick
● Not efficient
● Not “pure”
● Not designed for “computers” but for people:

Try to map “objects” to the real world

Basic advantages
● Reusable
● Easy to read, understand, and modify
● Clear and real-life oriented
● Mimics the way humans think about things,

not as 01011011, but as “dogs bark, cats
meow, but they're all furry”

● More work explaining and planning on the
front end less work for → less work for
addition/maintenance

Abstraction
● Theoretically seamlessly convert real life

concepts into computer data objects.

“Set and forget”

Encapsulation

● Represent and use essential features without
necessarily knowing exactly how they work;

● Only allow interactions with “objects,” not the
data on the machine. (prevents programmers
from tampering with things they shouldn't)

Inheritance

Hierarchically store objects to create
“taxonomies.”

Classes can have “children” that inherit
everything from the parent AND add more

Polymorphism
● The ability to implement and use code that

calls for an action or a characteristic, and yet
does not require that action/characteristic to
be the same every time.

“I don't care HOW, just get it done”

Classes
● A “general” noun
● A “blueprint”
● An “ideal/theoretical form”
● An “object factory”

(to the computer, an invented data type. Like
a string or float or array)

Object (to the human)
● A Proper Noun
● An instance of a class
● One of many possible
● A copy of the “Thing”

(to the computer, a specific piece of data, like
a “string” (string) or an array [0,5,19])

Properties (or attributes)
● Adjectives applicable to the class/object
● Characteristics or
● Conditions

(to the computer, variables associated with
the class/object)

Methods
● Verbs!
● Anything the object can do
● Anything the object can have done to it

(to the computer, any FUNCTION associated
with a class/object)

Now, to make things way more
complicated:

When thinking about class - “noun” may be
too narrow. Technically, ANYTHING might
make a good object. Even something like an
action:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

