

LIS-3353

Linux and such...

Which is “primitive?”

Controversial idea:

The mouse is the worst thing to ever happen
to computers.

Why command line/text?

Because you can very quickly say/relate
complex concepts in a concise way, by
combining a series of simple symbols.

You know, like talking. Or writing.

Command line is the act of literally talking to
the computer....unlike...

This is cool

This is cool

Utterly inefficient and kind of stupid for the task, I mean, Google Maps is literally already MUCH
better than this today, but cool.

What's so bad about the mouse and
touchscreens,etc?

“Caveman interface.”
● Pre-linguistic/animal-like
● “Point and grunt”

(Tablets and even “Minority Report” etc, are
cool and fun...but why is Charades a game?)

Intelligence requires Language

Buttons and gestures are frequently
convenient for repetitive tasks...

...but to do anything intelligent,
you need LANGUAGE.

TEXT. Numbers and Letters.

So again…

literal infinity
bounded only by the limits
of all language and math the 12 or so things the little

 buttons it allows you to do

It's so easy, even...

Either way...

Yes – early text was (and is?) ugly and
unforgiving, and fixing that to various degrees
propelled the big tech companies..

… but, along the way, restricting access to
“back-end” text stuff helped create some of
the messes we deal with today; including the
oddness of programming languages.

So, “text”

- sane

- predictable

- simple

- infinitely useful and portable

...and formerly not sexy at all
it’s coming back, though...

Obvious old school text drawbacks

Though powerful; very “brittle” – this applies
to most programming languages as well:

”You can understand this sentence tacos even
though I put a random word in.”

(this will break many a text interface, badly)

Voice Interfaces (alexa, siri et al)

Interesting; and MUCH closer to the
command line:

You tell it things, and it tries to do them.
Some notable differences though

So, (old school) “text”

- sane

- predictable

- simple

- infinitely useful and portable
- but not “easy.” (requires precision,
sometimes not useful feedback, not a lot of
intuition

Voice Commands

- sane-ish?

- (somewhat) predictable

- NOT simple

- NOT infinitely useful or portable by any
means. A VERY VERY limited set of
commands.

(Can’t even play “old town road,” whats up
with that?”)

Why, e.g. Linux?

1) Free and open

2) Language/Text Based

(These two are completely related; newer
stuff tries to allow for more of 2 and/or 1; e.g.
Mac OS X, Android)

The Unix Way

Write programs that do one thing and do it
well.

Write programs to work together.

Write programs to handle text streams,
because that is a universal interface.

Wow, so how do you kill a giant?
(slowly)

● “Non-computer” devices
– (thank you Moore's Law)

● The Internet

BOTH POWERED BY:

Free (and not-so-free-but-free-ish) Software

A bit more on the whole Free/Open Source thing:
(because English is silly)

“Free as in speech,

not free as in beer.”

No restrictions (libre)

No cost (gratis)

Free Software (came first)

The principle?
Just like the “Golden Rule,” really:

“We gave this to you for free, without restriction.
Please do the same if you choose to give it to others”

Alas, sometimes
“We gave this to you for free, without restriction.
Please do the same if you choose to give it to others”

In legalese?

The General Public License, or GPL.

Why not “public domain?”
Public Domain is the “without copyright” default.

No restrictions at all? Seems right?

But think about, e.g. Shakespeare…..

How this works:

Who here owns Microsoft
Software?

EULA
aka, all the stuff you can’t do...

GPL

Similar.

You don’t own it. But the terms are
MUCH nicer.

GPL
You may copy

You may modify

You may keep forever and never give away, even if you
change it
You may “sell,” even.

BUT

If you DO give to anyone? You MUST allow whoever you
give it to all of the above (like everyone else did for you)

Real hard to sell the idea of making money with
something that says “free” (Darn you, English)

So, “Open-Source” is adopted by some, and
the definitions are slighly modified.

All free software is open source, but not all
open source software is free (as in speech or
otherwise)

And so, you get a mix....

This slide is better.

Free Software / FOSS / FLOSS
Here's some code, do what you want, but

whatever you re-release? Share freely.

Non-free “Open Source”
Here's some code, do literally whatever you
want.(even if you want to lock it back down)

Open Source (“permissive”/not “free”)

You can do most anything with it, including locking it back down.

BSD, Apache Web Server, the MIT License

Free Software
● You can do anything with it yourself, EXCEPT

you may NOT re-release it “closed.”

GNU/Linux, Firefox

Unix Descendants
(aka, why am I talking about all this?)

Unix Descendants
(aka, why am I talking about all this?)

So: understanding Unix/Linux stuff will help you immensely
with understanding the shape of the web.

ESPECIALLY file management, one of the most important
things.

This is the main reason why I'm making you do a Linux
install...because….

Some claim:

The OS wars are over, and “Linux” and “Open-Source” won.

The OS wars are over, and “Linux” and “Open-Source” won.

...but

Did we get “Freedom” or something else?

All “Open-Source” powered…
...but also not particularly free.

Did we get “Freedom” or something else?

(lots of people don’t say “Free Software” or “Linux” and even
hate the GPL. Mostly …. Developers)

What is an OS, really?

Lots of different kinds of software at
different levels.

(Apple/Windows just squishes them all
together)

A rough car analogy

 Linux is a Kernel

A rough car analogy
GNU is the other stuff. I don't know what all of it together is
called because I'm not a car guy. But, you know, this:

A rough car analogy

 Ubuntu Linux? = Model/Make

A rough car analogy

 LXDE / Unity? / KDE / etc.

For comparison – Win 7?

Win 10?

OS X (older)?

Choices choices choices
(for better or worse)

Linux has many different

“Desktop Environments”
(or Window Managers)

(which, to most, probably look like completely different operating systems)

KDE (old)

KDE

Elementary

Linux Mint

Ubuntu (GNOME)

Fancy compiz fanciness

OpenElec (XBMC/Kodi)

Kali Linux

Awesome

Let's take a trip...

Here.

Torch/cci/etc (maybe?)

jrm4.com (HostDime)

And finally. My House.
(not my actual house. Too messy.)

COMMAND LINE INTRO
(did we get this far?)

Shell Scripting / The command line.

That default thing that comes up on all the unixy-linuxy systems
everywhere.

It’s a text interface. You type commands into it and the computer
responds.

And it’s also a “programming” language. As in, you can type in more than
one command in a row, save it to a file, and run the file. So, you know,
“programming.”

(quotes will be explained later)

Various names for the stuff we do today:

Command line: Blinky cursor area that's literally asking you, “okay,
now what?”

Terminal: App for command line (used to be the computer itself)

Shell: Any particular “type” of command-line environment.
Examples are Bash, Fish, Zsh, MS-Dos, etc.

Bash: “Bourne Again Shell; the specific Linux/Unix shell we will
use.

Scripting: Putting a bunch of shell commands in a file and running
it as a program.

Users and Permissions
(they actually mean something here)

ROOT – Like “Administrator” or maybe “God”

users – humans
(..and others – fake “users” to get tasks done)

Some systems (eg Ubuntu) allow for Super Users

S.U.- do “this” = sudo

And now...this makes sense

Congrats..

Nothing from HERE forward on THIS set of slides
will be on the quiz, unless it is also found elsewhere.

Permissions
aka why original windows was amazingly stupid because multiple people

might want to sometimes use the same computer

Three major things you can do with files

READ (look at, view, listen to)

WRITE (and delete and edit)

EXECUTE (run as a program)

Three important “groups”

owner of the file

owner's group

everybody else

Permissions for directories
Quick note on permissions for directories (kind of non-intuitive)

READ: Is able to read the directory listing

WRITE: Is able to change contents of the directory

(create new/delete existing files, or rename them)

EXECUTE: Is able to access/ go to the directory

Why Linux has no virus problem
Windows historically does not distinguish between:

files you're meant to read/watch/hear/edit, and
files you're meant to run.

A piece of paper that says “Go jump off a
bridge” is pretty harmless...unless....

Practical Permission problems you are likely to encounter:

● If you're unable to view, execute, or delete/change a file, try this.

● If you write a little shell script (.sh), remember to set it executable.
(The only permission command I use on a regular basis is
chmod +x “file.sh”

● FAT and NTFS filesystems (the ones Windows use) don't have
permissions, but Linux has to occasionally pretend they do, this
causes problems.

● When you're taking a website online, this is often a difficult issue.
(For a good reason; you don't want website visitors overwriting
your critical files!)

File Paths
File paths are HIERARCHICAL and DELIMITED by backslashes, starting
with root, at “/”, e.g.

/media/cdrom/mypaper.txt

signifies a file “mypaper.txt” in a folder called “cdrom”, and THAT
folder is in a folder called media – and “media” is in the root
directory.

SPECIAL FOLDERS:SPECIAL FOLDERS:

~ or ~/ signifies the user's home folder. i.e. if your username is
fsmith, and you are logged in: ~/ = /home/fsmith/

. (one period) refers to your current folder

.. (two periods) refers to one folder up. Thus, if you're currently
in /home/fsmith then ../ would refer to /home.

The LINUX Filesystem
(EVERYTHING is a file!)

/bin, /sbin Systemwide binaries –
/boot Boot Stuff–
/dev - devices

/etc (Some) helper files–
/home/user YOUR files & config (you can just back this up)–

.files (dotfiles)

/lib Libraries (kind of like dlls)–
/lost+found improper shutdown? –
/opt non-default/weird programs–
/mnt, /media generic “mount points”–
/proc the actual running processes whooa–
/usr User stuff (mostly binaries)–
/tmp temp files–
/var other spooling data, logs–

Linux/Unix Commands
An action or program that a computer can do

Find them with “apropos,” learn about them with “man”

(check these out http://www.oreillynet.com/linux/cmd/)

Commands can optionally have ARGUMENTS, in the form of:

OPTIONS

one dash + letter (ls -a)

two dashes + words (sort --reverse)

EXPRESSIONS

text; numbers; files; streams – things to be manipulated

http://www.oreillynet.com/linux/cmd/

Getting help

man (command)

info (might give you more info)

apropos (keyword to search)

help (pretty basic stuff)

but seriously, Google/Duckduckgo etc

File Manipulation

ls - list

cd – change directory

rm –remove (delete for good)

mv – move OR rename (they are literally the same thing, weird)

cp - copy

Viewing text and files

cat - “concatenate” - but kind of funny
that it’s usually used to just view. Ah, Unix.

less - this is such a terribly bad joke I hate
even explaning it

...but what about editing?

Editing Files

nano/pico (text-based, “normal” keys)

vi/vim (hardcore choice 1 universal,modal)

emacs (hardcore choice 2)

Multiple commands, one line

& - Run both simultaneously

&& - Run the first one, and then the second
ONLY IF the first “succeeds,” otherwise stop.

; - Run the first one, then the second
regardless of what happens.

Pipes and redirects
(this is where the power is)

Default behavior: read from “stdin”, write to “stdout”

OR, the below...

> (over)write/replace a file

>> write to/append to file

< read from file

| pipe output from first command into 2nd

tee pipe AND write to stdout

Even MORE command line.

One quick command I totally forgot:

echo

(puts argument through stdout, nicely)
printf for “raw”

BASH
BASH (Bourne Again) Shell - others are fish and zsh, etc

Lots of “tricks” are available here, eg

● Tab completion

● Up arrow key for history

● Ctrl-R to search history

and many MANY more

More BASH

Furthermore, you can modify this environment to fit your needs, via:

.bashrc

(stuff here will be run everytime you open a terminal)

A great example is the “alias” command. If a command doesn't exist
for what you want to do, just ,ake up your own!

alias modbash='nano ~/.bashrc'

Opening Files
IN TERMINAL

less

cat (stdout)

COMMAND/ARGUMENT STYLE

xdg-open file

vim textfile

firefox localfile.html

firefox http://slashdot.org

SORT
● - i = case INSENSITIVE
● - r = REVERSE
● - g = numbers
● - R = random

GREP (line matching)
grep OPTIONS PATTERN (FILE)
Can search over FILES or STDIN

Also, can search ONE FILE or MANY (check -d or -R)

useful flags:

-i (case insensitive)

-v (invert search/show NON-matches)

-l (just show matching FILES, not lines)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

