

LIS-5364

Object Oriented Programming
with PHP

Object-Oriented?
● Not quick
● Not efficient
● Not “pure”
● Not designed for “computers” but for people:

Try to map “objects” to the real world

Basic advantages
● Reusable
● Easy to read, understand, and modify
● Clear and real-life oriented
● Mimics the way humans think about things,

not as 01011011, but as “dogs bark, cats
meow, but they're all furry”

● More work explaining and planning on the
front end less work for →
addition/maintenance

Abstraction
● Theoretically seamlessly convert real life

concepts into computer data objects.

“Set and forget”

Encapsulation

● Represent and use essential features without
necessarily knowing exactly how they work;

● Only allow interactions with “objects,” not the
data on the machine. (prevents programmers
from tampering with things they shouldn't)

Inheritance

Hierarchically store objects to create
“taxonomies.”

Classes can have “children” that inherit
everything from the parent AND add more

Polymorphism
● The ability to implement and use code that

calls for an action or a characteristic, and yet
does not require that action/characteristic to
be the same every time.

“I don't care HOW, just get it done”

Classes
● A “general” noun
● A “blueprint”
● An “ideal/theoretical form”
● An “object factory”

(to the computer, an invented data type. Like
a string or float or array)

Object (to the human)
● A Proper Noun
● An instance of a class
● One of many possible
● A copy of the “Thing”

(to the computer, a specific piece of data, like
a “string” (string) or an array [0,5,19])

Properties (or attributes)
● Adjectives applicable to the class/object
● Characteristics or
● Conditions

(to the computer, variables associated with
the class/object)

Methods
● Verbs!
● Anything the object can do
● Anything the object can have done to it

(to the computer, any FUNCTION associated
with a class/object)

Now, to make things way more
complicated:

When thinking about class - “noun” may be
too narrow. Technically, ANYTHING might
make a good object. Even something like an
action:

What's in a class?

Properties and functions which can be:

Public: accessible by everyone

Protected: Accessible only inside the class
and any extending classes

Private: ONLY accessible inside the class

What's in a class?

Properties and functions, mostly:

To take advantage of OOP, let's generally
make our properties “protected” (mostly
private)

And our functions “public” (so that we can
access them as programmers)

Inheritance!
● You may make a new class by extending an

old one.

But note, you can only have ONE parent (in
php). Choose wisely.

e.g. Class Bear extends Animal{

Abstract Classes

Any shared data across a lot of possible items
● Abstract classes cannot be instantiated

themselves, therefore they're USELESS
unless EXTENDED:

abstract class fsuperson {

protected $fsuid =''
}

● abstract class Fsuperson {

protected $fsuid =''

public function getfsuId()...
}

Interfaces: Function Prototype
● Merely lists methods that a class MUST

implement.
● Why not just use a method? Because an
interface completes similar actions in
different ways

Interface canUseClassroomComputer {
public function getComputerAccess();
}

Class professor extends Fsuperson
implements canUseClassComputer{

//the below MUST be defined

public function getComputerAccess(){

fillOutStupidPointlessForm
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

